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Abstract

Additional quantitative results are presented for
the existence of optimal decision rules and stochastic
stability for linear systems with white random parameters
with respect to quadratic performance criteria, by exam-
ining a specific version of a multivariable optimization
problem.
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1.  INTRODUCTION fr .l BC e

This paper considers the optimal stochastic control of a multi-
variable linear system, with a specific structure, with respect to a
quadratic index of performance. The system dynamics are described by
a linear vector difference equation in which both the system matrix (A)
and control matrix (B) are multiplied by white, possible correlated,
scalar random sequences.

A threshold condition involving the maximum eigenvalue of the
system matrix A and the means, variances, and cross correlations of the
white parameters is obtained. If the threshold condition is violated,
then there does not exist an optimal solution to the infinite horizon
optimization problem, and the resultant closed-loop system is not stable
in a mean square sense.

The results of this paper represent another manifestation of the
Uncertainty Threshold Principle (UTP) reported by Athans, Ku, and
Gershwin in [1] and represents a specific multivariable extension of the
scalar results reported in [1]. It also generalizes the results of
Kutayama [2], which dealt with control-dependent white noise, to the case
of simultaneously, possibly correlated, state- and control-dependent white

noise parameters.

2. PROBLEM FORMULATION

Consider a linear stochastic discrete-time system whose dynamics are

described by the following vector difference equation




x(t+1) = Y(£)A x(t) + §(t)B u(t) + E(t) (1)

where x(t) is the n-dimensional state vector, u(t) is the m-dimensional
control vector, and g(t) is white gaussian process noise. Assume that
A and B are constant matrices of appropriate dimensions and that [A, B)
is a controllable pair.

Further assume that the scalars Y(t) and §(t) are gaussian white
random sequences (uncorrelated in time) with known stationary statistics.

More precisely, we assume

Elv(t)} =¥ ; EL(v(t) - V) (y(T) - NN}=T &(¢,0) (2)
elé(t)} =3 ; E{(8(0)-8) (8(1) - B)} = A 8(¢,T) (3)
E((Y(t) - V) (6(D) - B)} = A §(t,T) (4)
E{E€(t)} = 0 ; ELE(IE (T)} = E §(¢,T) (5)

where §(t,T) is the Kroenecker delta (8(t,T) =1 if t = T, 8(t,T) = 0 if
t # T). Furthermofre assume that the process noise §jt) is mutually inde-
pendent of the random parameters Y(t) and §(t).

We consider a standard quadratic cost functional

T

3 = Bz Y(B)Q x(t) + u' (DR u(t)} (6)

2
t=0

where Q is positive semidefinite, R is positive definite, and [Q}/z, Al is
an observable pair.

Under the assumptions that we can measure the entire state vector
x(t) exactly, at each instate of time, we wish to find the causal optimal

control sequence u(0), u(l), u(t), ... which minimizes the quadratic
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cost (6).

Remark 1 The problem considered by Katayama [2] corresponds to the
case

Y=1,T=0,A=0,E=0 (7

3. SOLUTION

The problem can be readily solved by stochastic dynamic programming
[3] for any fixed value of the planning horizon time T. The derivation
is straightforward and hence omitted. Only the results are stated.

The optimal control is obtained using linear state variable feedback,

ur(t) = -G(t)x(t) (8)

The optimal mXn feedback control gain matrix G(t) is given by the formula
Glt) = R+ (32 + MB'R(t+1)BI LT § +MB'K(t+1)A (9)

The nxn matrix K(t) satisfies a recursive matrix equation of the form

K(t) = (v +D)A'K(t+1)A + Q
- ¥ T+ M2AkE+DBR + (B2 + AB'R(t+1)B] 1Bk (84112
(10)
with K(T) = 0.

Remark 2 The recursion (10) will be referred to as the UTP matrix
equation; it is similar to a matrix Riccati eguation. However, unlike
Riccati equations it cannot be related to a coupled set of linear equa-

tions. Under our assumption the positive definite matrix K(t) exists




and is bounded for all finite planning horizon times T.
The optimal cost (6) is given by

T
I*(x(0),m) = £ x' (OK(0)x(0) + = Z K(t)E (11)
t=0
4. THE INFINITE HORIZON CASE (T + <)

The interesting results occur as one analyzes the infinite horizon
case, T * ©®, so as to examine the existence of an optimal solution and
the stabilizability of the stochastic system [1], [2]. Once more we
shall show that there exists a threshold condition which provides a
dividing line between existence and non-existence of optimal solutions

to the problem ags T > ., We summarize the main result as follows.

Theorem 1 (Uncertainty Threshold Principle)
An opcimal solution exists for the problem stated in Section 2 as

T+ if and only if

max |xi (| < 1/8 TR L (12)
i

where 8 is defined by

iy 2
82=;2+F—(6+A) >0 (13)
T2 4

and max Iki(ﬁ)l denotes the magnitude of the maximum eigenvalue of the
i

constant system matrix A in the system dynamics (1).
Before we present the proof of the theorem it is important to make

some remarks.




Remark 3 In the case of non-random parameters (I = A =A = 0), B = 0.

This means that given our assumptions of [A, B] controllability and

(a, g%/

mal control problem independent of the (open loop) eigenvalues of A.

2] observability, one can always solve the infinite horizon opti-

On the other hand, as the variances I' and A of the random parameters
increase, then B increases, and the value of 1/8 defines the radius of
a shrinking disc which must contain all the open-loop eigenvalues of A

in order for the problem to have a solution.

Remark 4 If the condition (12) is violated, i.e. if

max I)\i(ﬁ)l > 1/8 (14)
i

then there is no solution to the optimal control problem, and one cannot
stabilize (in a mean square sense) the system (1). Under these condi-
tions the optimal cost, J*, as defined by (11} undergoes exponential
growth as T increases
max [A (8 &)|r

J*(T) > ce 2 ; ¢ = constant (15)
Because of the explosive growth of the optimal cost, then only short
term (small T) decisions make sense; see also [1].

As in the scalar case [1], even if condition (14) holds, the con-

trol gain matrix G(t), see eq. (9), remains well behaved and bounded

3
G = lim e+ B [B'K(t+1)B] 1B'K(t+1)a (16)
k(e | |w &4
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Next we present the details of proving Theorem 1. We remark that the
proof essentially uses algebraic manipulations and known properties of
discrete Lyapunov and Riccati matrix equations.

)

The main idea of the proof is to examine the behavior of lim K(tb
>0
or the behavior "backward in time" of the UTP matrix equation. The
arguments are similar, but not identical, to those given in [2].

For the sake of notational convenience define the scalars

a Q7Z+I‘;a2=(73'+ M2 a321/§2+A (17)

1

Then the UTP equation (10) can be written as

K(t) = 0, A'K(t+1)A + Q

1
- 4,A'K(E+)BIR + = B'K(t+1)B) 'B'K(£+1)a (18)
3
From Egs. (13) and (17) one sees that
8" =a, - a0 (19)

By adding and subtracting

Sy

A'K(t+l)A (20)
to the right hand side of Eq. (18), and some algebra, Eq. (10) reduces
to

K(t) = 821_\_'35_(131)5_ +9Q
1

+ 0,0,A' [K(t+1) - K(t+1)B[a,R + B'K(t+1)B] "B'K(t+1)]A
(21)
Attention is focused to the matrix
M(ts1) K(t+l) - K(t+1)Bla R + B'K(t+1)B] "LB'K(t41) (22)
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Such matrices arise naturally in the Riccati equation of standard linear

quadratic problems where the control weighting matrix is 0.R. Under the

3
given assumptions of [A, B] controllability and (A, 9}/2] observability

it is known that that [4],[5]*

(@) M(t+l) = M'(t+1) > O (23)
(b) There exists a bound

L > M(t) all t (24)

Since M(t+l) is positive definite, so is a2a35fﬂjt+l)§: Hence we obtain

K(t) > B%A'R(t+1)A + @ (25)

From (25) it is obvious that if any eigenvalue of (B A) is greater than
unity then K(t) grows without bound backward in time, that lim K(t)
does not exist and that the optimal cost undergoes exponent?gj growth
as indicated by (15). On the other hand from (24) and (25) one obtains
that

K(t) < 82_1_\_'_1_(_(t+1)ﬁ +Q+00A'LA (26)

Hence if all eigenvalues of (B A) are less than unity, the right hand side

of the recursion (26) will approach a bounded constant solution matrix

and so will K(t). Hence, the limiting solution lim K(t) is well defined.
We remark that the above proof requires tha:?;.i; nXxn and nonsingu-

lar, as required in the Corollary of [2). However we believe that this

is a sufficient, but by no means necessary, condition; it could probably

* The notation A > B (A > B) means that A-B is positive definite (A - B
is positive semidefinite).
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be removed by a more detailed analysis of the UTP difference eguation.

e CONCLUSIONS

The quantitative results of the Uncertainty Threshold Principle

have been extended to a special case of a multivariable control problem,

generalizing the results in [1] and [2].
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